Search results for "Deviance information criterion"

showing 4 items of 4 documents

The Effective Sample Size

2013

Model selection procedures often depend explicitly on the sample size n of the experiment. One example is the Bayesian information criterion (BIC) criterion and another is the use of Zellner–Siow priors in Bayesian model selection. Sample size is well-defined if one has i.i.d real observations, but is not well-defined for vector observations or in non-i.i.d. settings; extensions of critera such as BIC to such settings thus requires a definition of effective sample size that applies also in such cases. A definition of effective sample size that applies to fairly general linear models is proposed and illustrated in a variety of situations. The definition is also used to propose a suitable ‘sc…

Deviance information criterionEconomics and EconometricsBayesian information criterionSample size determinationModel selectionPrior probabilityStatisticsLinear modelBayesian inferenceAlgorithmSelection (genetic algorithm)Statistics::ComputationMathematicsEconometric Reviews
researchProduct

Bayesian dynamic modeling of time series of dengue disease case counts

2017

The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order …

Atmospheric ScienceMeteorological ConceptsUrban PopulationEpidemiologyRainPoisson distributionGeographical locationsDengueMathematical and Statistical Techniques0302 clinical medicineStatisticsMedicine and Health Sciences030212 general & internal medicineAtmospheric DynamicsMathematicsMathematical Modelslcsh:Public aspects of medicinePhysicsElectromagnetic RadiationRandom walkDeviance information criterionGeophysicsInfectious DiseasesMean absolute percentage errorPhysical SciencessymbolsSolar RadiationStatistics (Mathematics)Research ArticleGeneralized linear modelConstant coefficientslcsh:Arctic medicine. Tropical medicinelcsh:RC955-962030231 tropical medicineColombiaDisease SurveillanceResearch and Analysis Methods03 medical and health sciencessymbols.namesakeMeteorologyHumansStatistical MethodsCitiesModel selectionPublic Health Environmental and Occupational Healthlcsh:RA1-1270HumidityBayes TheoremMarkov chain Monte CarloSouth AmericaAtmospheric PhysicsRandom WalkEarth SciencesPeople and placesMathematicsForecastingPLOS Neglected Tropical Diseases
researchProduct

Geographical Distribution of Cardiovascular Mortality in Comunidad Valenciana (Spain)

2002

Comunidad Valenciana is one of the seventeen autonomous regions into which Spain is divided. It is located on the east coast of Spain, next to the Mediterranean sea, with an area of 23,255 km2 and with 4,009,329 inhabitants in 1996. From an administrative point of view there are three levels of aggregation: provinces (3 units), health areas (20 units) and municipalities (541 units).

Deviance information criterionEast coastMediterranean seaGeographybusiness.industryDistribution (economics)Ischaemic heart diseaseSocioeconomicsbusinessCardiovascular mortality
researchProduct

Statistical relationship between hardness of drinking water and cerebrovascular mortality in Valencia: a comparison of spatiotemporal models

2003

The statistical detection of environmental risk factors in public health studies is usually difficult due to the weakness of their effects and their confounding with other covariates. Small area geographical data bring the opportunity of observing health response in a wide variety of exposure values. Temporal sequences of these geographical datasets are crucial to gaining statistical power in detecting factors. The spatiotemporal models required to perform the statistical analysis have to allow for spatial and temporal correlations, which are more easily modelled via hierarchical structures of hidden random factors. These models have produced important research activity during the last deca…

Statistics and ProbabilityOperations researchComputer scienceEcological ModelingBayesian probabilityBayes factorMarkov chain Monte CarloDeviance (statistics)Information CriteriaStatistical powerDeviance information criterionsymbols.namesakeCovariateStatisticssymbolsEnvironmetrics
researchProduct